

Improving Access Efficiency of Small Files in
HDFS

Monica B. Bisane, Student, Department of CSE, G.C.O.E, Amravati ,India, monica9.bisane@gmail.com

Asst.Prof. Pushpanjali M. Chouragade, Department of CSE,G.C.O.E, Amravati, India, pushpanjalic3@gmail.com

 .

Abstract— The Hadoop Distributed File System (HDFS) is designed to store very large data sets reliably, and to streamthose data sets at high
bandwidth to user applications. It is designed to handle large files. Hence, it suffers performance penalty while handling a huge number of small
files. Further, it does not consider the correlation between the files to provide prefetching mechanism that is useful to improve access efficiency.

In this paper, we propose a novel approach to handle small files in HDFS. The proposed approach combines the correlated files into one single
file to reduce the metadata storage on Namenode. We integrate the prefetching and caching mechanisms in the proposed approach to improve
access efficiency of small files. Moreover, we analyze the performance of the proposed approach considering file sizes in range 32KB-4096KB.

The results show that the proposed approach reduces the metadata storage compared to HDFS.

IndexTerms—Hadoop, HDFS, small files, file correlation, prefetching

.

1.INTRODUCTION

 Hadoop is a software framework developed for file
storing and processing of a huge dataset with the cluster of
commodity hardware [1]. Hadoop Distributed File System
(HDFS) is the key storage component of the Hadoop [2][3].
It is a specially designed file system for storing large
datasets with streaming access pattern and is generally
used in many internet applications. HDFS that is inspired
by GFS has master-slave architecture [4]. Major
architectural components of HDFS are Datanodes and
Namenode. In HDFS, files are divided into blocks that are
placed on a set of Datanodes to ensure reliability and data
availability. Namenode maintains metadata of all the files
and blocks in its main memory to maximize access
efficiency. It directs file access requests from client to
appropriate set of Datanodes. Subsequently, the client can
directly communicate with the Datanode to perform file

operations. Many applications in the area of biology,
climatology, energy, e-learning, e-business and e-library
consist of a huge number of small files. Though, the size of
several small files is far lesser than the size of block size,
HDFS stores each small file as one separate block.
Therefore, with massive small files, a large number of
blocks are created. Irrespective of the size of file, the
metadata of each file consumes 250 bytes and its block with
default three replicas consumes 368 bytes of memory of
Namenode [6]. Therefore, the number of files that can be
stored in HDFS is limited because to store metadata of a
huge number of small files, a significant amount of memory
is required. The problem of storing and accessing large
number of small files is named as small file problem [5].
Though numerous approaches have been presented to

address the small file problem, they have one or more of the
following limitations [8-16].

• Higher time for accessing small files [8-11][14]
• Applicable towards specific applications [8][11]
• No provision for appending a new small file into

existing combined file [10-12]
• Correlations between files are not considered [13][15-

16]
• Prefetching is not supported [13][15-16]
Therefore, as per our observations, it is required to

design an approach that not only reduces metadata storage
on Namenode but also improves access efficiency of small
files. To overcome the above mentioned limitations, we
propose an approach for efficient handling of small files in
HDFS. In the proposed approach, we combine the
correlated files into one large file to decrease the memory
usage of Namenode. We create a mapping file to store
location information of the small files present in the
combined file. The proposed approach reduces the access
time of the small files via supporting prefetching and
caching phenomenon as well as storing mapping file on
Namenode. Further, we present an append operation to
add small files into existing combined file. Thus, the
proposed approach is competent to handle the small files
efficiently in HDFS.

The rest of the paper is organized as follows: In section
II, we discuss the existing small file handling approaches.
The proposed approach for handling small files in HDFS is
described in section III. Section IV provides the
performance analysis of the proposed approach.
Conclusion is drawn in section V and we specify some
future work..

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 68

IJSER © 2016
http://www.ijser.org

IJSER

2. RELATED WORK
 Numerous approaches for handling small files have

been presented in the literature [8-16]. In [8], tuned HDFS
approach is proposed for optimizing I/O performance of
small files present in the WebGIS. However, it is applicable
to geographic data only. In [9], an approach is presented
that facilitates in-job archival of directories and files.
However, it takes high time to access the small files. In [10],
authors have proposed an approach that optimizes HDFS
I/O by using local cache to save some metadata of small
files. However, their experimental results reveal that
efficiency of accessing small files is not significant. In [11],
small file tuning approach is presented that merges small
files that are correlated in the PPT courseware. In addition,
prefetching of index file and correlated file is introduced.
However, file access efficiency can further be improved. In
[12], Extended Hadoop Distributed File System (EHDFS)
improves the access efficiency of small files and reduces the
metadata footprint in Namenode’s main memory. It does
not support append operation to add small files into an
existing combined file. Hadoop Archive (HAR) is mainly
used to archive files in HDFS for reducing memory usage of
Namenode [13]. In [14], authors have modified architecture
of HAR and proposed a New Hadoop Archive (NHAR) to
minimize the metadata storage requirements and to
improve efficiency of accessing small files. However,
correlations between files are not considered during the
process of archiving. SequenceFile is a specialized key-
value data structure that acts as a container for small files
[15]. It takes a long time to convert small files into a
SequenceFile. Moreover, to find a particular key, we have to
search whole sequence file. Thus, the access efficiency of
files degrades. In MapFile, sorted keyvalue pairs can be
appended and the key and the offset are stored in the index
file that results in a fast look up [16]. HAR, SequenceFile,
and MapFile have a common disadvantage that they do not
consider file correlations. As per our observations, no
attempt has been made that not only reduces the metadata
storage of Namenode but also improves the efficiency of
accessing small files. Hence, we propose a novel approach
that has the following features.

• Combining correlated small files for reducing the
 metadata storage of Namenode
• Prefetching and caching for improving efficiency of

 accessing small files.

3. SYSTEM OVERVIEW

 In Table I, we describe the notations that are used
throughout the paper. The proposed approach has three
techniques that play crucial role in reducing storage and
improving access efficiency of small files.

• File combining
• File mapping
• Prefetching and caching

3.1 File Combining
 Conventionally, Namenode stores metadata of

files and blocks. File metadata consists of file name, file
length, replication, modification time, access time, owner,
group, and file permissions. Block metadata consists of the
information about the set of blocks that possesses file data
and location of these blocks. Thus, in classical approaches,
the Namenode consumes a large amount of memory to
store metadata of massive small files. In order to reduce the

metadata storage of Namenode, several small files as
specified by the client are merged into one single file that is
known as combined file. As a result, Namenode maintains
the metadata of merely

TABLE I. LIST OF NOTATIONS

Notation Description

F Small file

N Total number of correlated

small files

fs={ f1, f2,...., fn } Set of correlated small files

from i=1 to n

Fm Mapping file

Fc Combined

NN Namenode

DN Datanode

CC Client Cache

R Mapping record

(file name,block number,

file offset, file length)

MD Metadata of a file

RS Remaining Size

BS Block Size

combined file rather than the metadata of several small
files. Moreover, file combining technique ensures that no
file is splitted across two blocks, as reading of a file from
two blocks reduces access efficiency.

3.2 File Mapping

 In HDFS, when a request for a particular file arrives,
HDFS client contacts Namenode for metadata of the file. In
the proposed approach, Namenode deals with the metadata
of the combined files with the help of mapping file.
Mapping file contains the small file name, file offset, file
length, and the logical block number of the combined file.
Each entry in the mapping file is called mapping record. To
obtain metadata, the requested small file first needs to be
mapped to a respective combined file. If the combined file
is composed of multiple blocks, mapping to the block
where the requested small file resides is required to access a
particular file.

3.3 Prefetching and Caching

 In HDFS, when a file is to be read, a request is made
to the Namenode to get the metadata of its combined file.
Namenode responses with the list of blocks holding the file
and the Datanodes that hold these blocks. Namenode also
provides a mapping record of the small file from the
mapping file. When a large number of small files are
accessed, a heavy load is created on Name node. The

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 69

IJSER © 2016
http://www.ijser.org

IJSER

proposed approach reduces load on Namenode by using
prefetching and caching techniques that are generally used
as storage optimization techniques [17]. Prefetching
conceals visible I/O cost and improves access time by
utilizing correlations between files and fetching data into
cache prior to they are requested [18].

 1) Metadata caching: When a request for a particular
file arrives, metadata of the combined file from the
Namenode is needed. If the client caches metadata of the
combined file, the metadata can be directly acquired from
the cache for subsequent file requests. Thus, it reduces
communications with Namenode and improves access
efficiency.

 2) Prefetching of mapping record: According to the
metadata of the combined file, a client determines which
blocks should be read to obtain the requested file. If the
mapping records are prefetched from the mapping file,
accessing files that are part of the same combined file needs
to directly complete I/O operation. Thus, prefetching and
caching prevents Namenode from becoming bottleneck in
the system and improves efficiency of accessing small files.

3.4 File access operations
 At this juncture, we discuss three file operations: write,
read, and append.

 1) Write operation: Once a combined file is created, it is
written on HDFS by HDFS client. The write operation is
described in Fig. 1. We first create empty files named fc and
fm. Then for each small file in fs, check is made whether the
remaining space in the block is able to accommodate the
small file. If remaining space is less than or equal to the
length of the small file, then small file is stored on the
current block, otherwise small file is stored on the new
block. Subsequently, mapping record of respective small
file is inserted in the mapping file using InsertMap function
that is described in Fig. 2. After all files are combined,
mapping file is stored on Namenode and combined file is
stored on HDFS.

2) Read operation: The client initiates the read operation by
providing small file name and the combined file name.
Algorithm for read operation is described in Fig. 3. The
client requests the Namenode for the metadata of the small
file. The Namenode responses by finding small file name in
the mapping file for the specified combined file. Mapping
record is searched in mapping file using SearchMap
function. Algorithm for SearchMap function is shown in
Fig. 4. The logical block number, file offset and file length
are sent back to the client along with block locations. Along
with the response to the current request, the Namenode
also prefetch mapping records of the files that reside
around the requested file. These prefetched mapping
records are stored in a client cache. The cache is checked
whenever a small file is requested by the client. If the
metadata is present in the cache, read request is not
forwarded to the Namenode. The client can then read the
file by directly contacting the Datanode. Thus the response
time of read operation is significantly improved. This
phenomenon also decreases the Namenode interaction per
file, thereby improves the efficiency of accessing
consecutive small files.
3) Append operation: The proposed approach allows to add
new small file into existing combined file. If the size of the

small file is less or equal to the size of remaining space in
current block, the file can be appended in the same block.
However, if the file size exceeds the remaining space in
current block, file is appended on a new block.
Simultaneously, mapping record is created in mapping file
for the new file that is appended into the combined file.
Algorithm for append operation is discussed in Fig. 5.

Input : fs={ f1, f2,...., fn }

Output : fc, fm

// fi.name represents name of the ith file

// fi.length represents length of the ith file

// fi.offset represents current_offset of the ith file

// fi.BN represents blocknumber of the ith file

1. Create empty files fc and fm

2. BN = 1; current_offset = 0; limit = BS

3. FOR i=1 to n

4. RS = current_offset

5 . IF ((RS + fi.length) <= limit)

6. fi.BN = BN

7. IF ((RS + fi.length) = limit)

8. BN++

9. current_offset = limit + 1

10. limit = BN * BS

11. ELSE

12. current_offset = fi.offset +

 fi.length

13. ELSE

14. BN++

15. fi.BN = BN

16. fi.offset = limit + 1

17. current_offset = fi .offset + fi.length

18. limit = BN * BS

19. Insert fi in fc

20. InsertMap (fi.name, fi.BN, fi.length, fi.offset)

21. Store fm on NN

22. Write fc on HDFS
 Fig.1.Algorithm for write operation.

Input: f.name: Name of f
 f.BN: Block number of f
 f.offset: Offset of f
 f.length: Length of f
Output: fm : Modified mapping file

InsertMap (f.name, f.BN, f.offset, f.length)

1. Open fm of corresponding fc

2. Create record r.

3. r.name = f.name

4. r.BN = f.BN

5. r.offset = f.offset

6. r.length = f.length

7. Store r at the end of the fm
 Fig.2.Algorithm to insert mapping record into mapping file

Input: f.name : Name of small file

fc.name : Name of combined file

Output: f

1. IF (MD of fc is present in CC)

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 70

IJSER © 2016
http://www.ijser.org

IJSER

2. IF (r of f is present in CC)

3. Obtain r from CC and contact DN to read f

4. ELSE

5. Go to step 9

6. ELSE

7. Get MD of fc

8. Store MD of fc in CC

9. Open fm of corresponding fc

10. r = SearchMap(fc.name , f.name)

11. Get mapping record of all correlated files of f

from fm and prefetch in CC

12. Contact DN to read f

 Fig. 3. Algorithm for read operation.

Input: fc.name: Name of combined file
f.name: Name of f
Output: r
SearchMap (fc.name, f.name)
1. Open fm of corresponding fc
2. FOR each record r in fm do
3. IF (r.name = f.name)
4. RETURN (r.name, r.BN, r.offset,
r.length)
5. ELSE
6. Display there is no such file exists

 Fig. 4. Algorithm to search mapping record from mapping file.

Input: f
Output: fc : Modified combined file
1. Open fc in write mode
2. IF (f can be accomodated in the current block)
3. Write f in current block of fc
4. ELSE
5. Request for new block
6. Write f in new block of fc
7. InsertMap (f.name, f.BN, f.offset, f.length)

 Fig. 5. Algorithm for append operation.

4. PERFORMANCE ANALYSIS
The The performance of the proposed approach with

respect to memory usage of Namenode is compared with
original HDFS. The experiment is performed in a cluster
having single node. Single node acts as Namenode,
Datanode as well as client. The node has following
configuration:

1) Intel(R) Core(M) i3-2348M @2.30 GHz
2) 4GB RAM
3) 500GB SATA HDD
The operating system of node is fedora 20 with kernel

version 3.17.7-200. We use Hadoop version 2.2.0 and java
version 1.7.0_71. The number of replicas for data blocks is
set to 1 and default block size is 64MB.

 In Fig. 6, we present the distribution of the file sizes
in workload. Total 10,000 files have been created. The size
of these files range from 32KB to 4096KB. Files in the range
between 32KB to 256KB account for 98% of the total file
[11]. The performance has been measured based on the
amount of main memory used by Namenode to store
metadata. The memory used by Namenode is measured

using JConsole provided by Java 2 Platform Standard
Edition (J2SE). For original HDFS and the proposed
approach, Namenode memory usage is evaluated after
placing sets of 1000 files into HDFS. A total of 10,000 files
have been placed and 10 readings have been taken for every
1000 files placed into HDFS. The memory usage of
Namenode for original HDFS and the proposed approach is
shown in Fig. 7.

 Fig. 6. Distribution of file sizes in workload.

 Fig. 7. Memory usage of HDFS and the proposed approach.

The results show that the memory used by the proposed
approach is 10% less than the original HDFS. The memory
usage is more in original HDFS because Namenode stores
file as well as block metadata of each file. Thus, as the
number of files increases, the memory usage also increases.
The memory used by the proposed approach is less as
Namenode stores merely file metadata of each small file.
The block metadata is stored by the Namenode for single
combined file and not for every single small file. As a
consequence, the memory usage of Namenode is reduced.

5. CONCLUSION

In this paper, we have focused on the small file problem
of HDFS. Storing a huge number of small files results in
high memory usage of Namenode and increased access
cost. We have proposed a novel approach for efficient
handling of small files. The proposed approach combines a
large number of small files into single combined file to
reduce the memory usage of Namenode. We have
evaluated the performance of the proposed approach in
Hadoop considering the file sizes in range 32KB-4096KB.
The experimental results show that the storage required for
metadata in main memory of Namenode is reduced by 10%.
Further, prefetching and caching mechanisms are

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 71

IJSER © 2016
http://www.ijser.org

IJSER

integrated in the proposed approach to improve access
efficiency of small files. In future, we aim to evaluate the
performance of the proposed approach with various cluster
settings and different ranges of file sizes.

REFERENCES

[1]Apache Hadoop [online].” Available: http://hadoop.apache.org/

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), 2010.

[3] D. Borthakur, “The Hadoop Distributed File System: Architecture

andDesign[online].”Available:https://hadoop.apache.org/docs/r0.18.0/

hdfs_design.pdf

[4] S. Ghemawat, H. Gobioff, and S.Leung, “The Google file system,” in

Proceedings Of ACM Symposium on Operating System Principles, pp.

29-43, Octomber 2003.

[5] T. White, “The small files problem [online].” Available:

http://blog.cloudera.com/blog/2009/02/the-small-filesproblem/

[6] “Name-node memory size estimates and optimization

proposal[online].”Availablehttps://issues.apache.org/jira/browse/HAD

OOP-1687

[7] J. Dean, and S. Ghemavat, “MapReduce: simplified data processing

on large clusters,” in Proceedings of the 6th Symposium on Operating

Systems Design and Implementation, pp. 137-150, USENIX Association

, 2004.

[8] X. Liu, J. Han, Y. Zhong, C. Han, and X. He ,“Implementing

WebGIS on Hadoop: A case study of improving small file I/O

performance on HDFS,” IEEE International Conference on Cluster

Computing and Workshops, pp. 1-8, 2009.

[9] G. Mackey, S. Sehrish, and J. Wang, “Improving metadata

management for small files in HDFS,” IEEE International Conference

on Cluster Computing and Workshops, pp. 1-4, 2009.

[10] L. Jiang, B. Li, and M. Song, “The optimization of HDFS based on

small files,” 3rd IEEE International Conference on Broadband Network

and Multimedia Technology (ICBNMT), pp. 912-915, 2010.

[11] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li, “A novel

approach to improving the efficiency of storing and accessing small

files on Hadoop: a case study by PowerPoint files,” IEEE International

Conference on Services Computing (SCC), pp. 65-72, 2010.

[12] Chandrasekar S, Dakshinamurthy R, Seshakumar P G, Prabavathy

B, and Chitra Babu, “A novel indexing scheme for efficient handling of

small files in Hadoop distributed file system,” IEEE International

Conference on Computer Communication and Informatics (ICCCI), pp.

1-8, 2013.

[13] “Hadoop Archives Guide [online].” Available:

http://hadoop.apache.org/docs/r1.2.1/hadoop_archives.html

[14] C. Vorapongkitipun, and N. Nupairoj, “Improving performance of

small-file accessing in Hadoop,” 11th International Joint Conference on

Computer Science and Software Engineering (JCSSE), pp. 200-205,

2014.

[15]“SequenceFile [online].” Available:

http://wiki.apache.org/hadoop/SequenceFile

[16]“Class MapFile [online].” Available:

http://hadoop.apache.org/docs/current/api/org/apache/hado

op/io/MapFile.html

[17] X. Peng, D. Feng, H. Jiang, and F. Wang, “FARMER: a novel

approach to file access correlation mining and evaluation reference

model for optimizing peta-scale file system performance,” in

Proceedings of the 17th international symposium on High performance

distributed computing, pp. 185-196, 2008.

[18] B. Dong, X. Zhong, Q. Zheng, L. Jian, J. Liu, J. Qiu, and Y. Li,

“Correlation Based File Prefetching Approach for Hadoop,” IEEE

Second International Conference on Cloud Computing Technology and

Science (CloudCom), pp. 41- 48, 2010.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 72

IJSER © 2016
http://www.ijser.org

IJSER

http://hadoop.apache.org/docs/current/api/org/apache/hado

